Tamilselvi, L. (57191842529) and Gayathri, S. (57197852827) and Selvaraju, P. (6508063627) and Lakshminarayana, Vemuri (57195739087) (2017) New classes of K4 snake gluing of cordial graphs.
Full text not available from this repository.Abstract
The graph K<inf>4</inf>S<inf>N</inf> is called a K<inf>4 K</inf><inf>4</inf> Snake graph. The vertex set V and edge set E are described below V (K<inf>4</inf> S<inf>N</inf> ) = {c<inf>k</inf> }<inf>k</inf> N <inf>=</inf> + <inf>1</inf> 1 ∪ {u<inf>i</inf> }<inf>i</inf> N <inf>=1</inf> ∪ {v <inf>j</inf> }N <inf>j</inf>=1 E(K<inf>4</inf> S<inf>N</inf> ) = {c<inf>k</inf> u<inf>k</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {c<inf>k</inf> v<inf>k</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {u<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {v<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {c<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {u<inf>k</inf> v<inf>k</inf> }<inf>k</inf> N <inf>=</inf>1 In this paper we prove that the graphs G<inf>1</inf> = P<inf>m</inf> (K<inf>4</inf> S<inf>n</inf> ) t , m ≡ 0 (mod 4), ∀ n ≥ 1, t ≥ G<inf>2</inf> = C<inf>m</inf> (K<inf>4</inf> S<inf>n</inf> ) t , m ≡ 0 (mod 4), ∀ t ≥ 1, n ≥ 1 are cordial. © 2017 Elsevier B.V., All rights reserved.
| Item Type: | Article |
|---|---|
| Subjects: | |
| Divisions: | Arts and Science > School of Arts and Science, Chennai > Mathematics |
| Depositing User: | Unnamed user with email techsupport@mosys.org |
| Last Modified: | 11 Dec 2025 06:04 |
| URI: | https://vmuir.mosys.org/id/eprint/4717 |
