New classes of K4 snake gluing of cordial graphs

Tamilselvi, L. (57191842529) and Gayathri, S. (57197852827) and Selvaraju, P. (6508063627) and Lakshminarayana, Vemuri (57195739087) (2017) New classes of K4 snake gluing of cordial graphs.

Full text not available from this repository.

Abstract

The graph K<inf>4</inf>S<inf>N</inf> is called a K<inf>4 K</inf><inf>4</inf> Snake graph. The vertex set V and edge set E are described below V (K<inf>4</inf> S<inf>N</inf> ) = {c<inf>k</inf> }<inf>k</inf> N <inf>=</inf> + <inf>1</inf> 1 ∪ {u<inf>i</inf> }<inf>i</inf> N <inf>=1</inf> ∪ {v <inf>j</inf> }N <inf>j</inf>=1 E(K<inf>4</inf> S<inf>N</inf> ) = {c<inf>k</inf> u<inf>k</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {c<inf>k</inf> v<inf>k</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {u<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {v<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {c<inf>k</inf> c<inf>k</inf> +<inf>1</inf> }<inf>k</inf> N <inf>=1</inf> ∪ {u<inf>k</inf> v<inf>k</inf> }<inf>k</inf> N <inf>=</inf>1 In this paper we prove that the graphs G<inf>1</inf> = P<inf>m</inf> (K<inf>4</inf> S<inf>n</inf> ) t , m ≡ 0 (mod 4), ∀ n ≥ 1, t ≥ G<inf>2</inf> = C<inf>m</inf> (K<inf>4</inf> S<inf>n</inf> ) t , m ≡ 0 (mod 4), ∀ t ≥ 1, n ≥ 1 are cordial. © 2017 Elsevier B.V., All rights reserved.

Item Type: Article
Subjects:
Divisions: Arts and Science > School of Arts and Science, Chennai > Mathematics
Depositing User: Unnamed user with email techsupport@mosys.org
Last Modified: 11 Dec 2025 06:04
URI: https://vmuir.mosys.org/id/eprint/4717

Actions (login required)

View Item
View Item