Kumar, Chandrashekhar and Muthumanickam, T. and Sheela, T. (2024) Medical Accident Image Analysis Using Capsule Neural Network. In: UNSPECIFIED.
Full text not available from this repository.Abstract
The rapid advancement of real-time medical technologies necessitates a focus on patient health, safety, and privacy. Reducing human intervention is essential due to age-related factors and the need for secure handling of sensitive information. This study explores the application of a Capsule Neural Network (Caps-Net) for real-time medical image recognition and analysis, a task traditionally enhanced by Convolutional Neural Networks (CNNs). Caps-Net is employed to identify and analyse injuries such as hand cuts, head and nose bleeding, and leg injuries from accidents. Utilizing a dataset of 12,000 images processed in Google Colab, the proposed model achieved a remarkable accuracy of 97%. These results highlight CapsNet's efficacy in medical imaging, offering significant benefits to healthcare professionals by improving diagnostic accuracy and expediting patient care. This research highlights the potential of advanced AI technologies in transforming medical image processing and enhancing clinical outcomes. © 2024 Elsevier B.V., All rights reserved.
| Item Type: | Conference or Workshop Item (Paper) |
|---|---|
| Subjects: | Engineering > Biomedical Engineering |
| Divisions: | Engineering and Technology > Aarupadai Veedu Institute of Technology, Chennai > Computer Science Engineering |
| Depositing User: | Unnamed user with email techsupport@mosys.org |
| Last Modified: | 27 Nov 2025 06:53 |
| URI: | https://vmuir.mosys.org/id/eprint/1860 |
Dimensions
Dimensions